A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem
نویسندگان
چکیده
BACKGROUND The inverse-QSAR problem seeks to find a new molecular descriptor from which one can recover the structure of a molecule that possess a desired activity or property. Surprisingly, there are very few papers providing solutions to this problem. It is a difficult problem because the molecular descriptors involved with the inverse-QSAR algorithm must adequately address the forward QSAR problem for a given biological activity if the subsequent recovery phase is to be meaningful. In addition, one should be able to construct a feasible molecule from such a descriptor. The difficulty of recovering the molecule from its descriptor is the major limitation of most inverse-QSAR methods. RESULTS In this paper, we describe the reversibility of our previously reported descriptor, the vector space model molecular descriptor (VSMMD) based on a vector space model that is suitable for kernel studies in QSAR modeling. Our inverse-QSAR approach can be described using five steps: (1) generate the VSMMD for the compounds in the training set; (2) map the VSMMD in the input space to the kernel feature space using an appropriate kernel function; (3) design or generate a new point in the kernel feature space using a kernel feature space algorithm; (4) map the feature space point back to the input space of descriptors using a pre-image approximation algorithm; (5) build the molecular structure template using our VSMMD molecule recovery algorithm. CONCLUSION The empirical results reported in this paper show that our strategy of using kernel methodology for an inverse-Quantitative Structure-Activity Relationship is sufficiently powerful to find a meaningful solution for practical problems.
منابع مشابه
Kernel Methods in Computer-Aided Constructive Drug Design
A drug is typically a small molecule that interacts with the binding site of some target protein. Drug design involves the optimization of this interaction so that the drug effectively binds with the target protein while not binding with other proteins (an event that could produce dangerous side effects). Computational drug design involves the geometric modeling of drug molecules, with the goal...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملDamage Assessment using an Inverse Fracture Mechanics approach
This paper studies the application of an inverse methodology for problem solving in fracture mechanics using the finite element analysis. The method was applied to both detection of subsurface cracks and the study of propagating cracks. The procedure for detection of subsurface cracks uses a first order optimization analysis coupled with a penalty function to solve for the unknown geometric par...
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کامل